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Abstract

Background: Biological aging may occur at different rates than chronological aging due to genetic, social, and
environmental factors. DNA methylation (DNAm) age is thought to be a reliable measure of accelerated biological
aging which has been linked to an array of poor health outcomes. Given the importance of chronological age in
recovery following aneurysmal subarachnoid hemorrhage (aSAH), a type of stroke, DNAm age may also be an
important biomarker of outcomes, further improving predictive models. Cerebrospinal fluid (CSF) is a unique tissue
representing the local central nervous system environment post-aSAH. However, the validity of CSF DNAm age is
unknown, and it is unclear which epigenetic clock is ideal to compute CSF DNAm age, particularly given changes
in cell type heterogeneity (CTH) during the acute recovery period. Further, the stability of DNAm age post-aSAH,
specifically, has not been examined and may improve our understanding of patient recovery post-aSAH. Therefore,
the purpose of this study was to characterize CSF DNAm age over 14 days post-aSAH using four epigenetic clocks.

Results: Genome-wide DNAm data were available for two tissues: (1) CSF for N = 273 participants with serial
sampling over 14 days post-aSAH (N = 850 samples) and (2) blood for a subset of n = 72 participants at one time
point post-aSAH. DNAm age was calculated using the Horvath, Hannum, Levine, and “Improved Precision” (Zhang)
epigenetic clocks. “Age acceleration” was computed as the residuals of DNAm age regressed on chronological age
both with and without correcting for CTH. Using scatterplots, Pearson correlations, and group-based trajectory
analysis, we examined the relationships between CSF DNAm age and chronological age, the concordance between
DNAm ages calculated from CSF versus blood, and the stability (i.e., trajectories) of CSF DNAm age acceleration
over time during recovery from aSAH. We observed moderate to strong correlations between CSF DNAm age and
chronological age (R = 0.66 [Levine] to R = 0.97 [Zhang]), moderate to strong correlations between DNAm age in
CSF versus blood (R = 0.69 [Levine] to R = 0.98 [Zhang]), and stable CSF age acceleration trajectories over 14 days
post-aSAH in the Horvath and Zhang clocks (unadjusted for CTH), as well as the Hannum clock (adjusted for CTH).
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Conclusions: CSF DNAm age was generally stable post-aSAH. Although correlated, CSF DNAm age differs from
blood DNAm age in the Horvath, Hannum, and Levine clocks, but not in the Zhang clock. Taken together, our
results suggest that, of the clocks examined here, the Zhang clock is the most robust to CTH and is recommended
for use in complex tissues such as CSF.
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Background
Across the spectrum of neurological injury populations,
identifying therapeutic targets of intervention to improve
patient outcomes has been a challenge. The aneurysmal
subarachnoid hemorrhage (aSAH) population is no ex-
ception. After aSAH, while extreme variability in patient
recovery is observed, younger patients generally do bet-
ter following injury [1] underscoring the importance of
chronological age as a predictor of outcomes. However,
given within-individual variability such as genomic, so-
cial, and environmental factors, it is thought that “bio-
logical aging” for many individuals happens at different
rates and that chronological age is often a flawed surro-
gate measure of this phenomenon. For this reason, a
substantial amount of work has been dedicated to identi-
fying molecular biomarkers of aging. One of the most
promising thus far is DNA methylation (DNAm) age
which can be computed from “epigenetic clocks” and is
suggested to be applicable across the lifespan and in all
sources of biological tissues [2].
Several epigenetic clocks have been proposed over the

last decade including the Horvath [3, 4], Hannum [5],
Levine [6], and “Improved Precision” (i.e., Zhang) [7]
clocks which use DNAm data from 353, 71, 513, and
514 CpG sites, respectively. DNAm age estimated by all
four epigenetic clocks is strongly correlated with
chronological age despite important differences in clock
construction detailed below. Individuals with a DNAm
age greater than their chronological age are said to have
“age acceleration” which has been associated with many
negative health outcomes such as cancer [8], Parkinson’s
disease [9], cardiovascular disease [10], and all-cause
mortality [11]. While the Horvath, Hannum, and Zhang
clocks were developed to estimate chronological age, the
Levine clock expanded on this to estimate a biological
age metric known as “phenotypic age,” which was based
not only on chronological age, but also other biological
factors predictive of mortality (e.g., albumin, creatinine)
[6]. Further, the Horvath clock was specifically devel-
oped to be a “pan tissue” clock by using training datasets
with DNAm data generated from many biological tissues
(e.g., brain, kidney, blood) whereas the Hannum and
Levine clocks were developed using only DNAm data
generated from the blood (though they have been subse-
quently examined and validated in other tissues). Of the
clocks mentioned here, the Zhang clock was developed

most recently and was designed to outperform all others
as it was developed using training data from 13,661
blood and saliva samples, a number that far exceeds the
sample sizes of its predecessors. To better understand
epigenetic aging, an expanded investigation of clocks in
diverse sets of tissues and diseases are needed, including
longitudinal evaluations [12]. Although DNAm age has
been examined in a wide range of biological tissues (e.g.,
blood, kidney, liver, tumor, brain [2]), it has not been ex-
amined in cerebrospinal fluid (CSF), a tissue that is crit-
ical for normal neuronal function; provides protection,
nourishment, and local environmental regulation for the
brain and spinal cord [13]; and can be used for clinical
analyses.
Under normal physiological conditions, CSF is clear and

contains ions, vitamins, and very few cells (less than five
cells per milliliter) [13]. Following aSAH, however, blood
accumulates in the subarachnoid space and mixes with
CSF [14]. The neuronal response to this contamination is
immediate degradation of hemoglobin, resulting in an in-
crease in reactive oxygen species, cellular damage/repair,
inflammation, and an acute immune response [15] which
often leads to secondary injuries that could impact DNAm
age [16, 17]. Because DNAm is dynamic and responsive to
external stimuli [18], and that CSF composition and secre-
tion are finely regulated and renewed approximately four
times every day [13], peripheral cell types may behave dif-
ferently in this new environment, potentially resulting in
cellular reprogramming, polycreodism, and DNAm pat-
terns not typically observed in the blood [19]. Further,
while the peripheral blood contaminates the CSF follow-
ing aSAH, it gradually clears during recovery. Likewise,
cell types originating in the brain (e.g., ependymal) and
ruptured vessel can be observed in post-aSAH CSF [13,
20]. As such, in many cases of neurologic injury where
CSF is drained as part of clinical management to reduce
intracranial pressure, including aSAH, this tissue may sup-
port an improved understanding of the local environment
of the central nervous system. Trajectories of age acceler-
ation during recovery from neurologic injury may offer
insight into the stability of DNAm age in acute patho-
logical conditions such as aSAH and improve our under-
standing of both DNAm age and recovery post-aSAH.
Despite this, the validity and potential utility of DNAm
age computed using CSF is not understood, which is an
important gap in our knowledge.
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Therefore, the purpose of this longitudinal, observa-
tional study was to characterize CSF DNAm age over
the immediate 14 day recovery period following aSAH.
As part of this characterization, we wanted to better
understand the relationships between CSF DNAm age
and chronological age, the concordance between DNAm
ages calculated using CSF versus peripheral blood, the
stability (i.e., trajectories) of CSF age acceleration during
recovery from aSAH, and the correlations between four
epigenetic clocks (Horvath [3, 4], Hannum [5], Levine
[6], and Zhang [7]). Given our focus on CSF in a patho-
logical condition, a critical piece of this study included
examination of the effects of cell-type heterogeneity
(CTH) as cell-type proportions can vary across time, tis-
sues, and individuals and can impact DNAm [21].
Therefore, all of our analyses were conducted both with
and without considering the effects of CTH to better
understand how CTH impacts DNAm age as a whole in
CSF, a complex tissue.

Results
Sample characteristics
Our final sample size consisted of n = 273 aSAH partici-
pants (n = 850 observations). All participants had CSF
DNAm data at up to five cross-sectional time points
over 14 days post-aSAH including time 1 (days 0 to 2),
time 2 (days 3 to 5), time 3 (days 6 to 8), time 4 (days 9
to 11), and time 5 (days 12 to 14). Of the overall sample,
n = 72 participants also had blood DNAm data available
at cross-sectional time point 1 (days 0 to 2). Sample
characteristics are presented (Table 1). Our overall

sample (n = 273) had a mean (± standard deviation) age
of 52.9 (± 11.1) years and was 68.5% female and 87.2%
White with Fisher grades of 2, 3, or 4 accounting for
29.7%, 49.5%, and 20.9% of the sample, respectively. The
mean body mass index (BMI) was 28.1 (± 7.2) kg/m2,
and 53.8% of participants were active smokers. We ob-
served similar statistics in the subset of participants with
both CSF and blood DNAm data available on days 0 to
2 post-aSAH (n = 72). The sample characteristics ob-
served were comparable to statistics observed in the gen-
eral aSAH population [22].

Correlation between DNAm age and chronological age
Across all CSF samples (n = 273 at up to five time points
over 14 days post-aSAH), DNAm age was moderately to
strongly correlated with chronological age in the Hor-
vath (R = 0.86, p < 2.2E−16), Hannum (R = 0.82, p <
2.2E−16), Levine (R = 0.66, p < 2.2E−16), and Zhang (R
= 0.97, p < 2.2E−16) clocks (Fig. 1). The relationship be-
tween DNAm age and chronological age was similar for
the Horvath, Hannum, and Levine clocks and strongest
in the Zhang clock (Fig. S1). We noted between partici-
pant variation and that the relationship between CSF
DNAm age and chronological age differed as a function
of chronological age, most notably in the Horvath, Han-
num, and Levine clocks (Fig. 1). Specifically, we observed
higher DNAm age than expected in younger participants
and lower DNAm age than expected in older partici-
pants. Within cross-sectional time points, we observed
similar correlations between chronological age and
DNAm age in CSF over time, with the strongest correla-
tions observed in the Zhang clock (Figs. S2, S3, S4, and
S5).
Within the subset of participants for which blood was

available (n = 72 on days 0 to 2 post-aSAH), chrono-
logical age was strongly correlated with DNAm age in
the Horvath (R = 0.88, p < 2.2E−16), Hannum (R = 0.92,
p < 2.2E−16), Levine (R = 0.83, p < 2.2E−16), and Zhang
(R = 0.97, p < 2.2E−16) clocks (Fig. 2). The relationship
between DNAm age and chronological age was similar
for the Horvath, Hannum, and Levine clocks and stron-
gest in the Zhang clock (Fig. S6). Correlations between
chronological age and DNAm age were stronger in
blood compared with CSF for the Horvath, Hannum,
and Levine clocks but were the same for the Zhang
clock. In all clocks, the relationship between DNAm age
and chronological age again differed as a function of
chronological age.

Correlation between DNAm age and age acceleration in
CSF and blood
Within the subset of participants for which both CSF
and blood DNAm data were available (n = 72 on days 0
to 2 post-aSAH), we observed moderate to strong

Table 1 Sample characteristics

Variable Overall samplea

(n = 273)
Sample subset with both
CSF and blood (n = 72)

Age, mean (SD) 52.9 (11.1) 53.0 (11.5)

Sex, female, n (%) 187 (68.5) 50 (69.4)

Race, White, n (%) 238 (87.2) 61 (84.7)

Fisher, n (%)

2 81 (29.7) 20 (27.8)

3 135 (49.5) 37 (51.4)

4 57 (20.9) 15 (20.8)

Smoking, n (%)

No 88 (32.2) 28 (38.8)

Yes 147 (53.8) 37 (51.4)

Social 3 (1.1) 2 (2.8)

Quit 31 (11.4) 3 (4.2)

Unknown 4 (1.5) 2 (2.8)

BMI, mean (SD) 28.1 (7.2) 28.8 (8.8)

CSF, cerebrospinal fluid; SD, standard deviation; BMI, body mass index
aAll participants in this study had longitudinal CSF samples available over
14 days post-aSAH
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correlations between DNAm ages measured in CSF ver-
sus blood in the Horvath (R = 0.87, p < 2.2E−16), Han-
num (R = 0.84, p < 2.2E−16), Levine (R = 0.69, p = 1.2E
−10), and Zhang (R = 0.98, p < 2.2E−16) clocks (Fig. 3).
Next, we used the subset of participants with both

CSF and blood available (n = 72 at cross-sectional time
point 1 on days 0 to 2 post-aSAH) to compare DNAm
age (Fig. S7) and age acceleration (Fig. 4) computed
from all clocks with optional correction for CTH. Corre-
lations between DNAm age in all clocks and tissues
ranged from R = 0.60 (Levine [CSF] and Zhang [blood])
to R = 0.98 (Zhang [CSF] and Zhang [blood]) (Fig. S7).
Correlations between age acceleration in all clocks
ranged from R = 0.08 (Hannum [blood] and Horvath
[CSF]) to as large as R = 0.97 (Zhang [CSF] and Zhang
[CSF + CTH]) (Fig. 4). CSF CTH data used to compute
the age acceleration metric adjusted for CTH are pre-
sented graphically (Figs. S8 and S9).
Finally, we compared the age acceleration data distri-

butions and densities between clocks with optional cor-
rection for CTH (Fig. 5). Levine CSF age acceleration
had the widest range of values while Hannum CTH-
adjusted blood age acceleration had the narrowest range

of values. Of the four clocks, the Zhang clock data distri-
butions looked most similar regardless of tissue and
CTH-adjustment.

Trajectories of CSF age acceleration
Horvath clock
Finally, in an effort to understand the stability (i.e., tra-
jectories) of CSF age acceleration over time during re-
covery from aSAH, we used group-based trajectory
analysis (GBTA) to examine age acceleration over time
(both with and without adjusting for CTH). Inferred age
acceleration trajectory groups for the Horvath (adjusted
and unadjusted for CTH), Hannum (adjusted and un-
adjusted for CTH), and Zhang (unadjusted for CTH)
clocks are presented (Fig. 6). As discussed in more detail
below, the trajectory models for the Levine clock (both
unadjusted and adjusted for CTH) and the Zhang clock
(adjusted for CTH) did not pass posterior model quality
control (QC), so are not included in Fig. 6. For age ac-
celeration data computed using the Horvath clock, both
unadjusted and adjusted for CTH, four distinct, flat tra-
jectory groups (groups 1 through 4) were inferred, sug-
gesting that Horvath DNAm age acceleration did not

Fig. 1 Chronological age versus DNAm age in CSF on days 0 to 14 post-aSAH using the Horvath, Hannum, Levine, and Zhang epigenetic clocks.
A Horvath. B Hannum. C Levine. D Zhang. Sample size, n = 273 at up to 5 time points (N = 850 observations over 14 days post-aSAH); dashed
line, x = y; solid line, predicted model fit. DNAm, DNA methylation; CSF, cerebrospinal fluid; aSAH, aneurysmal subarachnoid hemorrhage; R,
correlation computed using Pearson method
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change over time during recovery from aSAH (Fig. 6,
Horvath and Horvath + CTH). All unadjusted and
CTH-adjusted model selection parameters including the
Bayesian Information Criterion (BIC) computed from it-
erative model testing as well as posterior model QC in-
dices are presented (Tables S2a, S2b, S3a, and S3b).

Hannum clock
For age acceleration data unadjusted for CTH computed
using the Hannum clock, we again inferred four distinct
trajectory groups. While the two groups with the highest
age acceleration (groups 3 and 4) did not change over
time, we observed a slow increase in age acceleration in
group 2 and an increase followed by a return to baseline
in group 1 (Fig. 6, Hannum). When we controlled for
CTH in the calculation of age acceleration, this temporal
variation was washed out resulting in four flat trajectory
groups with no change over time (Fig. 6, Hannum +
CTH). All model selection parameters including the BIC
computed from iterative model testing as well as poster-
ior model QC indices are presented (Tables S4a, S4b,
S5a, and S5b). It should be noted that the plots in Fig. 6
depict inferred trajectory groups and are not directly

comparable because group membership changes after
adjustment for CTH as shown in Table 2 (e.g., in Fig. 6,
Hannum, group 1 has only 8 participants while in Fig. 6,
Hannum + CTH, Group 1 has 23 participants).

Levine clock
GBTA plots for the Levine clock are presented (Fig.
S10). Neither the trajectory model unadjusted for CTH
nor the trajectory model adjusted for CTH passed QC
procedures due to inadequate odds of correct classifica-
tion of the middle groups. In other words, while we were
confident in group participant assignment in the highest
and lowest DNAm groups (groups 4 and 1, respectively),
participant assignment could not be distinguished with
high confidence for the middle groups. All model selec-
tion parameters including BIC computed from iterative
model testing as well as posterior model QC indices are
presented (Tables S6a, S6b, S7a, and S7b).

Zhang clock
For age acceleration data unadjusted for CTH computed
using the Zhang clock, we inferred four distinct trajec-
tory groups with no change over time (Fig. 6, Zhang).

Fig. 2 Chronological age versus DNAm age in the blood at time 1 (days 0 to 2) post-aSAH using the Horvath, Hannum, Levine, and Zhang
epigenetic clocks. A Horvath. B Hannum. C Levine. D Zhang. Sample size, n = 72 with both CSF and blood DNA methylation data at cross-
sectional time point 1 (days 0 to 2 post-aSAH); dashed line, x = y; solid line, predicted model fit. DNAm, DNA methylation; aSAH, aneurysmal
subarachnoid hemorrhage; R, correlation computed using Pearson method
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When we controlled for CTH in the calculation of age
acceleration, the trajectory model for the Zhang clock
did not pass our posterior model QC, again due to a low
odds of correct classification (Fig. S10). All model selec-
tion parameters including the BIC computed from itera-
tive model testing as well as posterior model QC indices
are presented (Tables S8a, S8b, S9a, and S9b).

Characterization of trajectory groups (Horvath, Hannum,
and Zhang)
Next, we computed participant characteristics for identi-
fied trajectory groups for the trajectory models that
passed posterior QC (Horvath, Hannum, and Zhang [un-
adjusted for CTH]). For all clocks, we noticed a differ-
ence between sexes with a decreasing proportion of
females as age acceleration increased, though this was
only statistically significant in the Hannum clock (p <
0.0001). This is particularly notable in the age acceler-
ation trajectory groups unadjusted for CTH computed
using the Hannum clock. The group with the lowest age
acceleration (group 1) was 93.3% female while the group
with the highest age acceleration (group 4) was only

16.7% female. We observed no other differences in par-
ticipant characteristics by trajectory group.

Bivariate associations between DNAm age acceleration
and participant characteristics
Lastly, we wanted to understand if DNAm age acceler-
ation was associated with participant characteristics in-
dependent of inferred trajectory groups (Table 3). We
observed associations between sex and Horvath CSF
DNAm age acceleration (p = 0.02), Hannum CSF
DNAm age acceleration (p < 0.0001), and Hannum CSF
DNAm age acceleration controlling for CTH (p =
0.0001). We also observed associations between race and
Hannum DNAm age acceleration in the blood (p =
0.04), Levine CSF DNAm age acceleration (p = 0.03),
and Levine CSF DNAm age acceleration controlling for
CTH (p = 0.003). Finally, we observed an association be-
tween smoking and Levine CSF DNAm age acceleration
controlling for CTH (p = 0.003).

Discussion
This study is the first to characterize CSF DNAm age
over the first 14 days post-aSAH. While we observed

Fig. 3 DNAm age in CSF versus blood at time 1 (days 0 to 2) post-aSAH using the Horvath, Hannum, Levine, and Zhang epigenetic clocks. A
Horvath. B Hannum. C Levine. D Zhang. Sample size, n = 72 with both CSF and blood DNA methylation data at cross-sectional time point 1 (days
0 to 2 post-aSAH); dashed line, x = y; solid line, predicted model fit. DNAm, DNA methylation; CSF, cerebrospinal fluid; aSAH, aneurysmal
subarachnoid hemorrhage; R, correlation computed using Pearson method
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similarities between the tissues and epigenetic clocks ap-
plied, the Zhang clock outperformed the Horvath, Han-
num, and Levine clocks in a complex tissue and
pathological state, living up to its name as the “Improved
Precision” clock. Specifically, of the four clocks exam-
ined, the Zhang clock was the most robust to systematic
differences in DNAm age by chronological age discussed
in detail elsewhere [23] (Fig. 1, CSF; Fig. 2, blood). Fur-
thermore, while we observed generally strong correla-
tions between DNAm ages measured in CSF versus
blood (Fig. 3), we observed a near perfect correlation in
the Zhang clock (R = 0.98). Likewise, neither tissue nor
CTH made a substantial difference in the distribution of
the data from the Zhang clock, further supporting the
clock’s robustness. Although the relationship between
chronological age and DNAm age was generally steady
in CSF over the five cross-sectional time points exam-
ined, we observed trending time-dependent changes in
the Horvath, Hannum, and Levine clocks but not in the
Zhang clock (Figs. S2 through S5). While it is somewhat
surprising that the clock performed so well despite being
developed in non-CSF tissues, the performance of the
clock can likely be credited to its development in the lar-
gest training data set to date [7].

CSF DNAm training data was not used in the develop-
ment of any of the clocks we examined. While this ap-
pears to be a potential source of variability in the
Horvath, Hannum, and Levine clocks, it did not impact
our results when using the Zhang clock. This is a par-
ticularly notable finding and relevant for researchers
using DNAm data from complex tissues such as CSF.
Specifically, post-aSAH in particular, CTH requires care-
ful consideration as CSF is heavily contaminated with
blood immediately following aneurysm rupture but grad-
ually clears over time during recovery. As discussed
below, no reference-based method for cell type deconvo-
lution exists for CSF DNAm data. While we carefully
controlled for CTH using a reference-free method [24],
it would be interesting to compare our CTH-adjusted
results to a reference-based method developed specific-
ally for CSF post-aSAH. Likewise, if we had RNA se-
quencing data for our samples in parallel, a much more
nuanced exploration of the cell types would be possible
[19, 25]. While the true identities of cell types present in
the CSF post-aSAH would be scientifically and clinically
useful for the aSAH research community, because this
study focused on characterizing DNAm age over time,
direct biological interpretation of cell-type specific

Fig. 4 Correlation heatmap of unadjusted and CTH-adjusted age acceleration at time 1 (days 0 to 2) post-aSAH computed in CSF and blood
using the Horvath, Hannum, Levine, and Zhang epigenetic clocks. Sample size, n = 72 with both CSF and blood DNA methylation data at cross-
sectional time point 1 (days 0 to 2 post-aSAH). CSF, cerebrospinal fluid; aSAH, aneurysmal subarachnoid hemorrhage; CTH, cell-type
heterogeneity. All values presented are R values indicating age acceleration correlation computed using Pearson method
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results was not a focus of our study. Likewise, the Zhang
clock was robust to CTH, making these data unneces-
sary in this context.
Aside from CTH, we did not control for the influence

of participant characteristics (e.g., sex, race, smoking, or
BMI) in our calculation of age acceleration as justified
below. We observed that sex was associated with in-
ferred trajectory group assignment in the Hannum clock
(Table 2) which is consistent with existing literature sug-
gesting that men have higher DNAm age than women
[26]. This finding was confirmed by examining the asso-
ciations between participant characteristics and un-
grouped age acceleration metrics independent of
trajectory group (Table 3). These associations were not
observed in the other clocks, however, further highlight-
ing clock differences. A surprising observation in this
study was that the trajectory groups did not have other
notable differences in participant characteristics.
Although this study has many strengths, there are

some limitations that should be acknowledged. First,
several measurements of age acceleration are reported
in the literature. Most commonly, we observed (1)
Δage, defined as the difference between DNAm age and
chronological age, and (2) age acceleration, defined as

the residuals of DNAm age regressed on age (often with
the addition of covariates such as CTH). Initially, we
performed our analyses using Δage and then realized
that there was a systematic difference in delta age based
on chronological age as described above. In contrast,
the residual-based method of computing age acceler-
ation applied here results in a metric that has no correl-
ation with chronological age. The downside to this
method, however, is that it results in a metric that is an
attribute of the group and not specific to the individual.
Therefore, the residual method has a higher potential
sensitivity to outlying DNAm age values, though out-
liers were not found to be influential in our results.
Clinically, Δage may be of more interest than the re-
sidual definition of age acceleration because it could be
calculated for only one participant. On this note, we
also want to highlight a shift in the epigenetic age lit-
erature in which a call for disease- and tissue-specific
clocks [12] is being answered (e.g., placental aging clock
[27], hippocampal and cortical tissue clocks [28]). A
clock specifically trained using CSF DNAm data from
the acute period post-aSAH would have the greatest
potential clinical utility, particularly when examining
patient recovery.

Fig. 5 Sina plots of unadjusted and CTH-adjusted age acceleration at time 1 (days 0 to 2) post-aSAH computed in CSF and blood using the
Horvath, Hannum, Levine, and Zhang epigenetic clocks. Sample size, n = 72 with both CSF and blood DNA methylation data at cross-sectional
time point 1 (days 0 to 2 post-aSAH). CSF, cerebrospinal fluid; aSAH, aneurysmal subarachnoid hemorrhage; CTH, cell-type heterogeneity
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An additional potential limitation of this study was
that all blood samples were included on a separate plate
from CSF samples, so we were unable to adjust for pos-
sible CSF-blood plate batch effects. A strength of this
design, however, is that there were no chip batch effects
in the blood DNAm data. Additionally, the correlation
coefficient does not vary by change in origin and scale
[29]. Therefore, any potential CSF-blood plate effects
that differ in this manner will not distort the results of
our correlational analyses, which is supported by the re-
sults comparing blood and CSF DNAm age computed

using the Zhang clock (Fig. 3D). Furthermore, only a
subset of 72 of our participants had blood DNAm data
available making our comparisons involving blood
DNAm age or age acceleration quite small. Likewise, for
participants with blood available, the DNAm data were
only collected at one cross-sectional time point (on days
0 to 2 post-aSAH) which prevented us from comparing
the trajectories of blood age acceleration over time dur-
ing recovery from aSAH with CSF. Finally, aside from
the cohort studied in the present analyses, no other
aSAH sample with serial CSF DNAm data exists.

Fig. 6 Age acceleration trajectory plots for Horvath, Hannum, and Zhang epigenetic clocks. Note that the above plots portray inferred trajectory
groups and are not directly comparable as the group membership changes between plots as shown in Table 2; n = 273 at up to five time points
(N = 850 observations over 14 days post-aSAH condensed to 5 cross-sectional time points); times listed correspond to cross-sectional time points
(time 1 [days 0 to 2], time 2 [days 3 to 5], time 3 [days 6 to 8], time 4 [days 9 to 11], time 5 [days 12 to 14]); 95% confidence intervals shown are
for estimated trajectories and not observed trajectories. CSF, cerebrospinal fluid; CTH, cell-type heterogeneity; aSAH, aneurysmal subarachnoid
hemorrhage. Note that the Levine trajectory models and Zhang CTH-adjusted model did not pass posterior quality control and are presented in
the Supplementary Material
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Therefore, we were unable to replicate our findings in
an independent sample.

Conclusion
The Zhang clock outperformed the Horvath, Hanum,
and Levine clocks in post-aSAH CSF and was robust to
changes in CTH. Despite being developed in non-CSF

tissues, DNAm age computed from all clocks was gener-
ally accurate in post-aSAH CSF. CSF age acceleration
measured in all clocks was largely stable over time dur-
ing recovery from aSAH, particularly once adjusting for
CTH, suggesting that DNAm age is not impacted in the
acute aSAH recovery period. As such, we conclude that
(1) future studies could increase power by using a single

Table 3 Bivariate associations between participant characteristics and DNA methylation age acceleration metrics independent of
trajectory group

Age acceleration metric Sex Self-reported race

Est (SE) 95% CI p Est (SE) 95% CI p

Horvath (CSF) − 0.96 (0.41) − 1.78 to − 0.15 0.02a 0.31 (0.58) − 0.84 to 1.45 0.60

Horvath (CSF) + CTH − 0.63 (0.50) − 1.62 to 0.37 0.22 1.10 (0.67) − 0.22 to 2.42 0.10

Horvath (blood) − 0.24 (0.93) − 2.09 to 1.61 0.80 − 0.36 (1.23) − 2.82 to 2.10 0.77

Horvath (blood) + CTH − 0.30 (0.73) − 1.76 to 1.15 0.96 0.34 (0.97) − 1.60 to 2.27 0.73

Hannum (CSF) − 2.78 (0.44) − 3.65 to − 1.92 8.75E−10a − 0.92 (0.65) − 2.20 to 0.36 0.16

Hannum (CSF) + CTH − 2.18 (0.55) − 3.27 to − 1.10 0.0001a − 0.06 (0.77) − 1.58 to 1.46 0.94

Hannum (blood) − 0.69 (0.80) − 2.29 to 0.91 0.39 − 2.23 (1.04) − 4.30 to − 0.15 0.04a

Hannum (Blood) + CTH − 0.53 (0.58) − 1.69 to 0.63 0.37 − 0.21 (0.78) − 1.76 to 1.35 0.79

Levine (CSF) − 0.30 (0.61) − 1.50 to 0.90 0.62 1.81 (0.84) 0.84 to 2.22 0.03a

Levine (CSF) + CTH 0.99 (0.75) − 0.49 to 2.47 0.19 2.94 (0.97) 1.02 to 4.87 0.003a

Levine (blood) − 0.11 (1.05) − 2.2 to 1.99 0.92 − 1.16 (1.39) − 3.93 to 1.62 0.41

Levine (blood) + CTH 0.12 (0.95) − 1.77 to 2.01 0.90 0.17 (1.26) − 2.34 to 2.69 0.89

Zhang (CSF) − 0.31 (0.29) − 0.88 to 0.26 0.29 − 0.58 (0.40) − 1.37 to 0.21 0.15

Zhang (CSF) + CTH − 0.09 (0.44) − 0.95 to 0.78 0.85 0.04 (0.58) − 1.11 to 1.19 0.95

Zhang (blood) 0.74 (0.60) − 0.45 to 1.93 0.22 − 0.25 (0.80) − 1.85 to 1.35 0.75

Zhang (blood) + CTH 0.73 (0.53) − 0.33 to 1.79 0.17 0.43 (0.72) − 1.00 to 1.85 0.55

Age acceleration metric Smoking history BMI

Est (SE) 95% CI p Est (SE) 95% CI p

Horvath (CSF) − 0.07 (0.41) − 0.89 to 0.74 0.86 − 0.18 (0.14) − 0.46 to 0.10 0.22

Horvath (CSF) + CTH 0.24 (0.49) − 0.74 to 1.21 0.63 0.04 (0.24) − 0.42 to 0.51 0.86

Horvath (blood) − 0.86 (0.88) − 2.62 to 0.90 0.33 0.10 (0.31) − 0.51 to 0.71 0.74

Horvath (blood) + CTH − 0.83 (0.68) − 2.19 to 0.54 0.23 0.24 (0.38) − 0.52 to 0.99 0.53

Hannum (CSF) − 0.57 (0.47) − 1.49 to 0.35 0.22 0.08 (0.13) − 0.17 to 0.33 0.52

Hannum (CSF) + CTH 0.17 (0.56) − 0.94 to 1.27 0.77 0.19 (0.21) − 0.21 to 0.60 0.35

Hannum (blood) − 1.11 (0.76) − 2.62 to 0.40 0.15 0.14 (0.35) − 0.55 to 0.83 0.69

Hannum (blood) + CTH − 0.23 (0.56) − 1.34 to 0.89 0.69 0.02 (0.03) − 0.05 to 0.08 0.61

Levine (CSF) 0.84 (0.61) − 0.36 to 2.04 0.17 0.01 (0.09) − 0.18 to 0.20 0.89

Levine (CSF) + CTH 2.09 (0.70) 0.70 to 3.48 0.003a − 0.09 (0.16) − 0.40 to 0.22 0.56

Levine (blood) − 0.06 (0.97) − 2.05 to 1.93 0.96 0.18 (0.26) − 0.35 to 0.70 0.51

Levine (blood) + CTH 0.44 (0.90) − 1.34 to 2.23 0.62 0.03 (0.05) − 0.07 to 0.13 0.55

Zhang (CSF) − 0.17 (0.29) − 0.74 to 0.41 0.57 − 0.04 (0.20) − 0.43 to 0.36 0.85

Zhang (CSF) + CTH 0.46 (0.42) − 0.38 to 1.29 0.28 − 0.01 (0.26) − 0.53 to 0.52 0.98

Zhang (blood) − 0.33 (0.57) − 1.47 to 0.82 0.57 − 0.42 (0.46) − 1.33 to 0.50 0.37

Zhang (blood) + CTH − 0.31 (0.51) − 1.33 to 0.72 0.56 − 0.03 (0.03) − 0.09 to 0.03 0.32

The results of age acceleration metrics regressed on participant characteristics
Est (SE), unstandardized estimate and standard error; CI, confidence interval
aSignificance based on an alpha of 0.05; sex, reference = male; self-reported race, reference = White; smoking history, reference = no
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measurement from more participants, rather than gener-
ating DNAm data for each participant longitudinally,
and (2) it is unlikely that CSF DNAm age acceleration
from the clocks examined here offers additional predict-
ive value for recovery post-aSAH.

Materials and methods
Study design, setting, and sample
This study was an observational, longitudinal, secondary
data analysis that capitalized on existing genome-wide
DNAm data collected from a cohort of aSAH research
participants. All research protocols were approved by
the Institutional Review Board of the University of Pitts-
burgh, and informed consent was obtained from partici-
pants as part of the larger study. Participants were
prospectively recruited from UPMC Presbyterian Neuro-
vascular Intensive Care Unit in Pittsburgh, Pennsylvania,
between 2000 and 2013 as previously described [30]. In
brief, participants were included if they were diagnosed
with subarachnoid hemorrhage caused by an aneurysm
rupture, were at least 18 years of age, had no history of
debilitating neurological disorder, and required an exter-
nal ventricular drain to reduce intracranial pressure and
manage CSF as part of standard care in the hospital. As
part of the larger study, (1) participants were followed
over 14 days post-aSAH in the hospital as complications
that are predictive of long-term outcomes can occur
during this acute window (e.g., cerebral vasospasm, de-
layed cerebral ischemia) and (2) genome-wide DNAm
data were generated as described below.

Participant characteristic data
Participant data were extracted from the medical record
and included standard demographic data (e.g., age, sex,
and self-reported race), BMI and smoking history (given
associations between these factors and DNAm levels [31,
32]), and Fisher grade, which is a clinical variable meas-
uring the initial extent of aSAH injury based on the
amount and distribution of blood observed on a com-
puted tomography (CT) scan. Clinically, Fisher grades
can range from 1 (no blood detected) to 4 (intraventric-
ular or intra parenchymal blood present) [33]. Of note,
all participants in this study had severe enough injury
(Fisher grade > 2) to require drainage of CSF as part of
their standard clinical management.

DNA methylation data collection
DNA was extracted from two biological tissue sources
including (1) CSF (for all study participants [N = 279]
with serial sampling over 14 days after aSAH) and (2)
blood (for a subset of study participants [n = 88] at one
time point after aSAH). CSF samples from ventricular
drains placed as standard of care were selected for tar-
geted post-injury days of 1, 4, 7, 10, and 13 (± 1 day) as

described elsewhere [30]. DNA was extracted from CSF
using the Qiamp Midi kit (Qiagen, Valencia, CA, USA)
and from blood using a simple salting out procedure
[34]. All DNA was stored in 1× TE buffer at 4 °C until
DNAm data collection. All samples were collected,
stored, processed, and extracted using identical stan-
dardized/validated protocols. Genome-wide DNAm data
were generated using the Infinium Human Methyla-
tion450 BeadChip and scanned using the Illumina
iSCAN (Illumina, Incorporated, San Diego, CA, USA) at
the Center for Inherited Disease Research using labora-
tory QC procedures described in detail [30]. Standard
DNA concentration and quality checks were performed
prior to data collection and all DNA carried forward for
data collection was considered to be high quality and
high yield. Raw genome-wide DNAm data were analyzed
using Genome Studio Software (Illumina, Incorporated,
San Diego, CA, USA). Our data cleaning and QC
process included removal of poorly performing samples,
probes, and outliers [30] as well as functional
normalization and robust batch correction (i.e., chip,
row, and column effects) using the funtooNorm package
[35]. Of note, funtooNorm was designed to handle data
gathered across time and allows for interactions between
tissue types [35], making it ideal for complex tissues and
serial measurements. Our final post-QC sample size
consisted of N = 273 participants with serial CSF DNAm
data over 14 days post-aSAH (N = 850 samples) and
blood DNAm data for a subset of n = 72 of those partic-
ipants as described below.

Cell-type heterogeneity
Because cell-type proportions can vary across time, tis-
sues, and individuals, and that overall DNAm levels are
computed using the proportion-weighted average of the
cell-type specific methylation levels, CTH should be con-
sidered carefully as a potential confounder in studies of
DNAm [21]. CTH is particularly important in the
current analyses because, as we discussed above, CSF
post-aSAH is heavily contaminated by blood cells that
could take on different properties in this new space, cells
originating in the brain, and cells from the ruptured ves-
sel, which will gradually clear causing CTH to change
over time.
Careful consideration was given to our choice of cell

type deconvolution. Reference-based methods to infer
CTH data do not exist for CSF or for blood that is now
found surrounding the brain and spinal cord. We did
not feel that the application of a peripheral blood
reference-based method was appropriate given the poor
performance of these tools in cord blood, a tissue with
similar complexities to CSF (i.e., cord blood contains all
components of peripheral whole blood as well as other
cell types) [36]. Thus, CTH data were generated from
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the genome-wide DNAm data using Houseman’s
reference-free method which provided estimated propor-
tions of five cell types for each sample [24]. While this
method has been shown to result in accurate propor-
tions of major putative cell types, similar to standard
principal components analysis, the true cell type iden-
tities are not known. Cell types were plotted over time
using sina with violin [37] and spaghetti plots (Figs. S8
and Figs. S9).

DNA methylation age
DNAm age was calculated using four epigenetic clocks
(Horvath [3, 4], Hannum [5], Levine [6], and Zhang [7]).
These methods use linear functions and clock-specific
probes and coefficients to compute DNAm age as shown
in Eq. 1:

DNAmAge ¼ m0 þm1β1 þm2β2 þ…þmnβn ð1Þ

where DNAmAge is the predicted DNAm age for a
given individual; m is a clock-specific coefficient corre-
sponding to a clock-specific probe; β is the DNAm
measurement, a beta value as measured on a 0 to 1 scale,
for a clock-specific probe within a given individual; and
m0 is a clock-specific model intercept. It should be noted
that the Horvath method also uses an age transform-
ation function as described [3, 4] and shown in the Sup-
plementary Material (Additional File 1, Section 1.1).
Calculations for the Horvath, Hannum, and Levine
clocks were performed using a modified function from
the wateRmelon package [38] in R [39] (wateRmelon:
agep). The wateRmelon package supplies both Horvath
and Hannum coefficients for use with the “agep” func-
tion, and we modified this function to also compute
Levine DNAm age as described in detail in the Supple-
mentary Material. Calculations for the Zhang clock were
made using publicly available code [40].
DNAm age was computed using both CSF DNAm

data and blood DNAm data. To allow for comparability
between tissues, only clock-specific probes available in
both CSF and blood were used in our analysis. Following
implementation of the QC pipeline described above, for
the Horvath, Hannum, Levine, and Zhang epigenetic
clocks, we were missing DNAm data for 1, 3, 5, and 11
probes, respectively, as detailed in Table S1. Following
calculation of DNAm age, CSF data were reshaped into
five cross-sectional time points including time 1 (days 0
to 2 post-aSAH), time 2 (days 3 to 5 post-aSAH), time 3
(days 6 to 8 post-aSAH), time 4 (days 9 to 11 post-
aSAH), and time 5 (days 12 to 14 post-aSAH). The vast
majority of the blood samples available were collected at
time 1 (days 0 to 2 post-aSAH), so blood samples col-
lected outside of this cross-sectional time point (n = 16)
were excluded from further analyses.

DNA methylation age acceleration
For each of the three epigenetic clocks, we computed
age acceleration defined as the residuals of DNAm age
regressed on chronological age within each cross-
sectional time point. We computed age acceleration
both with and without adjustment for CTH, including
putative cell type proportions as a covariate in our re-
gression. Because the CTH data resulted in a propor-
tioned phenotype which added up to one, we excluded
the cell type with the lowest amount of variation within
our study sample to minimize confounding the results.
Age acceleration was computed both with and without
adjusting for extreme outliers (DNAm age > 3 times the
interquartile range), and the results were found to be
concordant. Therefore, we present only the age acceler-
ation metrics unadjusted for outliers. Additional partici-
pant factors were not included in our calculation of age
acceleration but were carefully examined as described
below.

Statistical analysis
Statistical analyses were conducted using R (version
3.6.0) [39] and SAS (version 9.4, SAS Institute Incorpo-
rated, Cary, NC, USA). Demographic and clinical char-
acteristics of our sample were examined using standard
descriptive statistics. CSF and blood DNAm age com-
puted from all three clocks was compared with chrono-
logical age using scatterplots and Pearson correlations.
For participants with both CSF and blood samples, we
compared the correlation between DNAm age and age
acceleration both with and without adjusting for CTH
using Pearson correlations and heatmaps.
Next, we examined age acceleration over time during

recovery from aSAH using GBTA implemented with the
Proc TRAJ macro in SAS [41, 42]. While there are sev-
eral methods to perform trajectory analyses such as hier-
archical modeling or latent curve analysis, these
methods estimate the sample average trajectory and use
covariates to explain the variability around this average.
In contrast, GBTA assumes the sample is composed of
distinct groups, each with a different underlying age ac-
celeration trajectory [41, 42]. This method allows us to
infer trajectory groups based solely on age acceleration
while also estimating how participant characteristics dif-
fer between group membership.
GBTA was performed through iterative modeling,

comparing models with varying group numbers and
shapes (i.e., intercept-only, linear, and quadratic terms)
to infer distinct trajectory groups. BIC was used as our
primary indicator of model fit, with a larger BIC indicat-
ing a better model fit [41, 42]. Following selection of a
best-fitting model, we performed a posterior QC check
of the model using several model-fit indices including
ensuring (1) the average posterior probability of group
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assignment was at least 0.7, (2) the odds of correct clas-
sification was greater than 5, and (3) the estimated group
assignment percentages were approximately equal to the
observed group assignment percentages [41, 42].
As described above, chronological age was adjusted for

in the calculation of age acceleration. Although sex,
BMI, smoking status have been shown to be associated
with DNAm, we did not adjust for additional covariates
during GBTA because we wanted to use a data-driven
approach to characterize and identify trajectory groups
based solely on age acceleration. However, following the
identification of the trajectory groups, we used one-way
analysis of variance and chi-square/Fisher’s exact tests to
understand how participant characteristics (e.g., sex,
BMI, smoking status, Fisher grade) differed between in-
ferred trajectory groups. Finally, we used linear regres-
sion to understand the associations between participant
characteristics and age acceleration metrics independent
of trajectory groups.
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org/10.1186/s43682-021-00002-6.
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age acceleration group-based trajectory analysis; Table S6b. Levine age
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